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ABSTRACT 

A technique known as the Taylor Series Correction Method (TSCM) for 

extracting the stress intensity factor from photoelastic data is reviewed. 

The need for "artificial" flaws is identified and an approach due to 

Savin is used to evaluate the near field effects of various practical 

flaw shapes upon the apparent stress intensity factor. Using the Sneddon- 

Srivastavsolution for a line crack in a finite width plate, the constric- 

tion of the singular zone is demonstrated as the crack tip approaches the 

free edge. Results indicate that care must be taken in applying TSCM to 

obtain photoelastic data at appropriate distances from the crack tip. 
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LIST OF SYMBOLS 

r, 6 Polar coordinates as defined in Figure 1. 

x, y Cartesian coordinates as defined in Figure 1. 

x, y Nondimensional coordinates x/w, y/w as shown in 

Figure 9. 

a Crack length or depth (for surface flaws). 

b Width of symmetrical notch at center (Figure 4). 

t Specimen thickness, 

w Width of finite width strip. 

a Notch angle (Figure 4) or elliptical flaw angle, 

z Complex variable x + iy (Figure A-l). 

z Complex variable ~k~ + iy (Figure 9). 

p Radius of curvature of notch at tip. 

n Fringe order. 

N Number of data points, 

f Material fringe value. 

T Maximum shear stress in plane perpendicular to the 

crack border. 

ö Remote tensile stress. 

aQ Regular or non-singular stress parallel to the crack 

at the crack tip. 

<5 OQ/O 
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Kj» SIF      Mode I stress intensity factor. 

KAP Apparent stress intensity factor xmav>^Trr along 

6 = |- in Figure 1. 

ax' °y' Txy   Stress components in a plane perpendicular to the 

crack border. 

ax' ay' Txy Stress components nondimensionalized with respect to 

the remote tension a. 

JQ, J1 Bessel functions of the first kind. 

IQ, IJ Modified Bessel functions of the first kind. 

G(t) Solution of Fredholm integral equation (6). 

X, Complex variable £ + in defined in Figure A-l. 

(?) Mapping function which maps c into z in Figure A-l. 

4>-j» <J>2 Mapping angles defined in Figure A-l. 

<J>, ty Muskhelishvili potentials. 

A. Least squares coefficients for G(t) in equation (11). 

B^ Coefficients in Taylor Series Correction Method of 

equation (5). 

TSCM Taylor Series Correction Method. 

d Dummy variable. 
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INTRODUCTION 

Although the use of photoelasticity for determining stress intensity 

factors was suggested by Irwin [1] as early as 1952, extensive employment of 

the method has been slow to develop.   There are a number of reasons for this. 

Results of Fessler and Mansell  [2] and Marloff et al  [3] revealed the need for 

highly accurate measurements, and their studies were reinforced by those of 

Kobayashi [4]-[6] and   his associates in their work with propagating cracks. 

Liebowitz, Vanderyeldt and Sanford [7] also noted certain near field effects 

which affected stress intensity factor (SIF) determination.    In order to obtain 

valid data for SIF determination one must take the data in a zone dominated 

by the singular stresses.   This zone is bounded on the outside by a zone 

strongly affected by the remote boundaries and loads, and on the inside by 

a zone dominated by wery local  effects.    These very local  effects for a stress 

freezing photoelastic material consist of two types: 

1) Non-linear effects which accrue from finite rotations and deforma- 

tions near initially sharp crack tips. 

2) Notch geometry effects when the crack is simulated with a notch, 

or when the crack opens a substantial amount, producing blunting.    Beginning 

in 1969, the senior author and his associates carried out a series of stress 

freezing photoelastic investigations [8]-[19].   These studies revealed that, 

in a number of three dimensional problems [13]-[15] the zone dominated by the 

singular stresses was severely constricted and that it was necessary to use 

data outside the singular zone for SIF determination.    In order to account 

for remote effects included in this way, a technique employing a Taylor 

series expansion of the maximum in-plane shear stress to account for the 

regular part of the stress field was employed.    The method is referred to 



as the Taylor Series Correction Method (TSCM). Details of the method have 

been described in [14] and [17] and its applicability to three dimensional 

problems was recently discussed in [20]. (This method will be featured in 

a chapter in the second volume of the SESA Monograph on Experimental Frac- 

ture Mechanics). Although the use of TSCM has extended the applicability of 

photoelastic SIF determination to three dimensional problems not previously 

solved, practical difficulties remain in fabricating appropriate crack geome- 

tries, producing effects upon the inner zone previously mentioned. More- 

over, analytical verification of the constriction of the singular zone due 

to free boundaries or three dimensional effects has not been demonstrated. 

In a very recent analytical study [21] McGowan and Smith have shown that the 

non-linear effects in the inner zone are much too near the crack or notch 

tip to be picked up in the photoelastic data. However, in problems where 

a specific crack shape is desired, an artificial crack may be sawed in, 

producing a relatively large root radius, or the photoelastic material in 

the rubbery range may stretch enough locally near the crack tip under even 

small loads to produce stress field disturbances which may extend into the 

photoelastic data zone. The present study is concerned with a quantitative 

analytical assessment of effects of this type, and also with a two dimensional 

analytical study of the influence of free boundaries upon the singular 

zone- 

BASIC THEORY 

The Irwin Equations [1] for the elastic stress field near the tip of 

a plane crack are: 

°x - ^„2 cos I {1 - sin | sin »} - aQ 



"y =(Sr)^ cos?{1 + s1n ?sin ¥* (1) 

-   KT •   8        e        3e 
Txy" (^r)1/2    Sln2COS2Cosf 

with the notation given in Figure 1. This discussion will be confined to 

plane problems so that complete solutions can be employed in all mathema- 

tical models. Application of the method to three dimensional problems is 

described elsewhere, [14], [19], [20]. The quantity measured photoelasti- 

cally is the fringe order which is proportional to the maximum in-plane 

shearing stress. The local value of this latter quantity may be computed 

by substituting Equations (1) into: 

Tmax = \ Aax -ay )c  + 4T^ (2) 

Then evaluating xmax along the convenient direction e = #/2 and combining 

this result with the stress optic law 

T -nt 
max  2t (3) 

one can obtain: 

»2 
h - (,r)V2 j^nfj' . ao2}l/2aQ (4) 

Equations (1) constitute a two parameter (Kj,cr0) set of field equations and 

are valid, according to Irwin in the singular zone. 

When one uses data outside this zone, the following equation may be 

used: 

instead of Equation (4) where the first term arises from the singular 

stresses and the Taylor Series accounts for the regular part of the stress 

field including oQ.    Use of Equation (5) is made in the TSCM and the number 



of degrees of freedom of the system can be greater than two (i.e.K,, Bn, B,, 

B2, • . . Bn) but normally does not exceed five or six. 

Although one normally would expect to plot stress (i.e.x  ) versus 
max 

distance from the crack tip, the authors have found this type of plot to be 

relatively insensitive to changes in the stress intensity factor. Instead, 

an apparent stress intensity factor is defined as: 

KAP - <8->V2 *max <6> 

and a normalized value of this quantity is plotted against (r/a)1^2. 

Extrapolation of this curve to r/a = 0 yields the experimental SIF. 

NOTCH EFFECTS 

Figure 2 is a microphoto of a natural flaw under a field of remote 

tension perpendicular to the crack plane showing how a "hairline" crack 

opens under tension into a geometry approximating a narrow ellipse. This 

blunts the crack tip into a root radius of about 5 x 10~3 mm. An assess- 

ment of the influence of this blunting was made by the authors in an 

earlier paper [12] by computing the apparent SIF from the Inglis-Kolosoff 

linearly elastic solution for an elliptical hole in an infinite plate 

under tension and normalizing it with respect to the SIF for a line crack 

in an infinite plate. The results are shown in Figure 3 and reveal a 

blunting effect which is negligible only if data are taken at least five to ten 

root radii from the crack tip. 

Artificial notches may be made in a variety of geometries. A series 

of those found convenient by the authors are pictured in Figure 4 together 

with the elliptical notch just discussed. Approximate mapping functions 

have been provided by Savin [22] which lead to the determination of the 



Muskhelishvili complex potentials [23] from which complete solutions to 

these geometries may be obtained. Such procedures are detailed in Appendix 

A for the geometries (other than elliptical) of Figure 4. 

The solution for a rectangular notch was obtained as a special case of 

the general mapping solution presented in Appendix A. The solution is exact 

for the region of the z plane corresponding to the unit circle in the x, 

plane. This region is not, however, an exact rectangle but has curvilinear 

sides and corners of some small radius of curvature. By increasing the 

number of terms in the mapping function, rectangles having straight edges 

and corners of any degree of sharpness can be obtained. The limiting case 

has stress singularities at the corners. 

Figure 5 is a plot of the normalized apparent SIF for rectangular 

notches corresponding to Figure 3 for elliptical notches. The corresponding 

curve for the limiting case of a line crack is again a straight line but 

in this case has a positive slope of unity which results from the fact that 

a-. =  a for uniaxial tension. It should be noted that locally the two solutions 

have an entirely different character with the rectangular notch having peak 

stresses at the corners and the ellipse having peak stresses at the notch tip. 

A comparison of Figures 3 and 5 shows a remarkable similarity between the 

elliptical notches with p/a = .01 and .05 and the rectangular notches with 

b/a = .01 and .05. Specifically, it can be seen that the notch curves begin 

to coincide with the line crack solutions at the same value of r/a whether the 

notch is elliptical or rectangular if we associate the value of b/a for the 

rectangular notch with that of p/a for the elliptical notch. This implies that 

it is not the minimum radius of curvature which is important but the relative 

width of the notch at the tip (note that the rectangular notch has extremely 

small radii of curvature at the corners and in the limit predicts stress 

singularities). 



As pointed out earlier, the number of terms retained in the mapping 

function affects the radius of curvature at the corners. Figure 5 represents 

10 terms in the mapping function. Figure 6 shows the effect of varying the 

number of terms on one of the curves of Figure 5. It is obvious that unless a 

very small number of terms is being used this effect is secondary on the 

comparison of interest. 

The case of angular notches was also studied as a special case of the 

mapping solution of Appendix A. The character of the solution is somewhat different 

as illustrated by the sharp tip (p < 5 x 10"'mm) rhombus solution shown in 

Figure 7. Even for very shallow angles the notch solution is seen to be 

somewhat below the line crack solution. At the origin the curves converge which 

indicates that the stress intensity factor is the same äs that for the line crack. 

This is further substantiated by the work of Gross and Mendelson [24]. How- 

ever, away from the origin where experimental data would be gathered the solutions 

differ by about 10% for a 30° notch. Hence a linear extrapolation would tend to 

underestimate the stress intensity factor. This effect is partially due to 

the large value of b/a involved in the rhombus. 

The same comparison for a blunted triangular notch is shown in Figure 8. 

This type of notch is easily obtained in practice by grinding the corners from 

a standard circular saw blade. 

This modification is very useful since the solution behaves essentially 

like a rectangular notch of width 2p rather than 2b (compare Figures 5 and 8). 

As in the previous solution (Figure 7) the notch stresses are somewhat below the 

crack stresses; however, for b/a < .10 the difference is quite acceptable. 

FREE BOUNDARY EFFECTS 

The effect of a free boundary on the stress field local to a crack 



tip has been of considerable interest in the field of fracture mechanics 

for some years. Numerous analytical and numerical investigations have been 

carried out with the specific purpose of determining free surface magnifi- 

cation factors for cracks approaching a free boundary. However since the 

stress intensity factor can be extracted from these solutions with much 

less labor than a complete solution requires, analytical solutions are 

limited almost invariably to Kj itself and give no information about higher 

order terms in the stress components. This causes two significant problems 

in attempting to verify a crack solution experimentally. First, in the 

absence of the complete solution, it is impossible to predict a priori the 

size of the zone dominated by Kj and aQ for use in the two parameter tech- 

niques previously discussed. Second, it is very difficult to judge whether 

experimentally observed trends are valid without a knowledge of the quali- 

tative character of the analytical solution away from the crack tip. 

Most numerical techniques are not well suited for studying this effect 

since accurate results are desired in the neighborhood of both a singulari- 

ty and a free boundary. Therefore any technique which does not make special 

provision for the singularity or which collocates on the boundary is unde- 

sirable. 

A convenient geometry for studying this effect is the through crack in 

a finite width strip shown in Figure 9. Although this problem is two dimen- 

sional the qualitative nature of the solution is expected to model wery 

closely the behavior of a three dimensional surface flaw approaching a free 

boundary since the local behavior of the three dimensional flaw at maximum depth 

is close to plane strain. Sneddon [25] has reduced the solution of this 

problem to the solution of the following Fredholm integral equation of the 

second kind. 



/•a 
G(t) = t + t  G(u)H(u,t)du (6) 

J0 

where a is the half crack length a nondimensionalized with respect to the 

half width of the strip w and the kernel is given by: 

H(u,t) 

*00 
-X 

{£m V») V« + ¥^fMf#} -x      (7) 
0 

where 

h(u,x) = [x coth(x)  - 1] I0(ux) - uxl,(ux) 

and IQ and I, are modified Bessel functions of the first kind. This equa- 

tion has been solved numerically by the method of successive substitutions 

utilizing a subroutine recommended by Squire [26] for the kernel evaluation. 

The subroutine is designed for infinite integrals and gives two independent 

estimates of the integral based on a 20 point Gaussian formula and a 41 point 

Kronrod rule. The difference between the estimates was of the order of 10 

for this particular integrand and can be taken to be a conservative estimate 

of the error in the integrand. The technique for solving (6) consisted of 

splitting the t axis into N discrete points t., letting Gn(t.) = t. and 

determining successively G,, G2> . . . GN until convergence was achieved by 

use of the formula 

fä 
Gi+1(t.) = t. + tj    G.(u) H(u,t.) du (8) 

0 

The definite integral was evaluated by a subroutine from [26] very similar 

to the one previously discussed only for a finite interval. The solution 

was found to be relatively insensitive to the number of divisions along the 

t axis. The results for G(t) are plotted in Figure 10 for various values 



of a/w. The stress intensity factor is given by Kj/a Ua)  = G(ä)/a as 

derived from reference [25]. It was computed for Values of a/w ranging 

from 0.1 to 0.9 and agreed within 1/2% with Sneddon's values. 

Having determined G(t) the stresses are obtained by superimposing the 

following two stress systems as reduced from reference [25]. 

Stress System I 

a + a 
_x y_ = 

2 

a   - a y x _ 

T = y 
Jo 

where <|>(p) = -p 

<|>(p)e~py cos(px) dp 

pKpJe"^ cos(px) dp 
;0 

P4»(p)e"py sin(px) dp 

6(u) J0(pu) du, JQ is the zeroeth order Bessel 

(9) 

ifunction of the first kind» the stresses have been nondlmensionalized with 
j 

respect to the remote stress ö, and x, y are nondimensional coordinates as 

shown in Figure 9. 

Stress System II 

a   + a 
JS y_ = 

2 

gy " gx . 
2 

g(p) cosh (px) cos(py) dp 

[h(p) cosh(px) + px g(p) sinh(px)] cos(py) dp 
(10) 

'0 

xy 
[h(p) sinh(px) + px g(p) cosh(px)] sin(py) dp 



where 

9<P) " 2P + sinh(2p)^V + Cl(3-2^e"2P)] 

^    -    2p+sinh(*P) C 2C1^ - 2p + p2 +  e"2P) + C2p (1 " 2p + e"2p) ] 

C^P) 

C2(P) = 

G(u) IQ(pu)du 

G(u)ul-|(pu)du 

and IQ and 1-j are as previously defined. 

Stress system I is singular and for the special case G(u) = u reduces to 

the solution for a through crack in an infinite body in tension. For this 

case <fr(p) = -ä J^pä) which indicates that the integrand in (9) can be expected 

to be highly oscillatory. In addition, since e"py decays very  slowly for 

the region of interest (small y), it is apparent that a direct numerical 

approach to this system of equations will be unsatisfactory. Instead an 

expression of the form 

G(t) 
N 

n=l n 

2n-l (ID 

was fitted to the numerical values of G(t) by the method of least squares. 

The use of equation (11) allowed the evaluation of equations (9) in closed 

form as shown in Appendix B. It also permitted the closed form evaluation of 

C, and C? after which stress system II could be evaluated using standard 

techniques. The integrand of stress system II was also oscillatory due to 

sine and cosine terms, but it converged quite rapidly due to the term sinh(2p) 

in the denominator. 
10 



Since the solution for G(t) (Figure 10) is nearly linear even for large 

values of a/w it was found that three terms in (11) were sufficient. The 

approximation of 6(t) had no effect on the free edge boundary conditions 

ö" (+ IIYI = T (± T»y) = ° s1nce tnev follow from the form of g and h in 

equation (10). The shear stress along both planes of symmetry also vanished 

identically so that the only effect of the approximation was that residual 

values of ö remained on the crack surface. The average of these residuals 

R        9 2   2 
varied from 10~-N/mnT for a/w = 0.1 to nearly 10 N/mm for a/w = 0.9. 

In all cases they are small relative to the applied tension which is unity. 

1/2 
Figure 11 is a nondimensional plot of KAp vs. r  based on numerical 

results of the finite width strip solution. The two parameter singular zone 

is the linear portion of each curve near the origin. As illustrated by the 

dashed line passing through the point of tangency drawn from the origin 

along each curve, the singular zone shrinks rapidly as the crack approaches 

the free edge of the strip. Perhaps even more significant is the slopje of 

the curves at the origin which is proportional to aQ. As the crack tip 

approaches the free boundary the slope increases significantly. This jis 

demonstrated in Figure 12 which is a non-dimensional plot of aQ and Kjj vs. 

a/w. It demonstrates that as a/w approaches unity not only is Kj magnified 

but also a0 and that the increase in aQ  even exceeds that in Kj. This implies that aQ 

is primarily due to the interaction between the singular stress field and the 

free boundary and has little to do with the remote stress field for problems 

with near boundaries. This is an important observation for most surface flaw 

problems of current practical interest which invariably involve free boundaries. 

CONCLUSIONS 

From this study the following general conclusions can be made: 

11 



A - Notch Effects 

1) When possible, natural flaws should be used to simulate the line 

crack. In such cases data gathered outside of r/a = lOp/a will ordinarily be 

free of notch effects. 

2) Rectangular notches can be used to simulate line cracks provided 

that data are gathered outside of some minimum radius. This radius can be 

judged from the elliptical notch solution (Figure 6) provided that the half 

width of the rectangular notch is associated with the radius of curvature 

of the elliptical notch. 

3) Blunt triangular notches can be used to simulate the line crack 

provided that b/a ~ .10 and data are gathered outside of a specified value of 

r/a which can be determined from the elliptical notch solution by associa- 

ting the half width of the triangular notch at the tip with the radius of 

curvature of the elliptical notch. 

4) Sharp angular notches will tend to significantly underestimate the 

stress intensity factor unless data are taken extremely close in. 

B - Free Boundary Effects 

5) The singular zone is shown to shrink rapidly as a crack approaches 

the free edge of a strip. 

6) When a crack is near a free boundary, aQ  depends primarily upon 

the interaction between the singular stress field and the free boundary, and 

is not strongly influenced by the remote stress. 

All of the foregoing conclusions are specifically directed towards clari- 

fying the determination of SIF values by means of the TSCM utilizing stress 

freezing photoelasticity which involves no plastic zone. However, there is 

a \iery  local non-linear region [21] which is expected to produce effects in 

12 



the singular zone which would be similar to those associated with small 

scale yielding in structural materials. 
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APPENDIX A 

MAPPING SOLUTION 

It is well known that the stresses around a hole in a homo- 

geneous isotropic plate can be obtained by the complex variable tech- 

nique introduced by Muskhelishvili [23]. Numerous problems involving 

square, rectangular and triangular holes have been solved by Savin 

[2g. For the most part these solutions contain only a few terms in 

the series expansion of the mapping function and hence involve curvi- 

linear sides and rounded off corners. With the advent of the digital 

computer it has become feasible to automate the process of determining 

the Muskhelishvili potentials 4 and * and hence to arrive at solutions 

containing arbitrarily sharp corners and straight edges. Thus it is 

possible to determine the effect of the geometrical approximations 

involved in truncating the series mapping function. 

For the present purpose of determining the effect of various 

types of notches on the estimation of the mode I stress intensity 

factor it is desirable to consider the axisymmetric eight sided polygon 

of Figure A-T. Once the general solution is obtained for this region 

the following special cases can be evaluated: 

a) Rectangular notch (a = 0, ^ = ^ t  0) 

b) Rhombus (a f  0, <^ = 0, <f>2 = J-) 

14 



c) Rectangular notch with sharp triangular tip 

(a f 0, ^ = 0, <{>2 f 0) 

d) Rectangular notch with blunted triangular tip 

(a f 0, ^ t 0, <|>2 t 0) 

To obtain the mapping of Figure A-l,the Schwartz Christoffel transfor- 

mation is first applied which maps the exterior of the polygon in the 

z plane into the exterior of the unit circle in the ? plane.    This 

transformation is given by (see [22]) 

inctQ-l 
1  " t 

0"|-1 
z = R 

+ complex constant 

i - fP"1 H. 
t dt 

(A-l) 

Referring to, FigureA-1 it is apparent from symmetry considerations that 

A' =    -E' = 

B' =    -F'  = e 

and 

e-Hl 

-1*2 

C = -G' = F' = -e 

D' = -H' = E I -_       C I     = 

'♦2 

**1 

3-a 
al a4 a5 a8 2 

1+a 
an — a3 

~~ a6 "" a7 ~" 2 

Hence equation (A-l) takes the form 

15 



z = R 
2i<(.h(l-a)/2 

1 - 
,2i<h 

;2l(*,2l2' 

1 - 

dt + complex constant. 

a/2 2iWl-«)/2 

in 
(A-2) 

Since |eie| = 1 and |t| >" 1, this equation can be approximated 

by expanding each of the factors in a binomial series and multiplying 

the resulting polynomials. Then by integrating the resulting poly- 

nomial and by inversion (i.e. by replacing c by —) the desired mapping 

is obtained. 

As a result of symmetry it is found that the required mapping 

is of the form 

R i + 
N 
z 

n=l 
CnC 

2n-l "(0 (A-3) 

where the coefficients R, Cn are real and the expansion has been 

truncated after the Nth term. A computer program was written to carry 

out the above calculations for given values of <J>-|, 4>2> <* and N. 

It is well known that the solution of the first boundary value 

problem of elasticity can be reduced to the determination of two 

analytic functions <f>(z) and i|>(z) of the complex variable z. The 

stresses are related to the complex potentials <f> and $  by the following 

formulae where primes denote differentiation: 

ax + ay = 2[*'(2) + *'(z)] 

oy - ax +  2ixxy = 2[z<!>"(z) + *'(z)] 

(A-4) 

16 



The stress boundary conditions using this formulation take the form 

♦(2) + z*'(z) + *(z) = fT + if2 on C (A-5) 
s 

where f] + if2 = 1 | [^(s) + 1T2(s)] ds is the force transmitted 
s0

J 

across a segment of the boundary (ds) and T,, T2 are components of the 

applied tractions on the boundary C. Under the transformation z = u(c) 

(using the notation <f>(6) = *(n>(e)) etc.) the stress transformation 

equations yield the following expressions for the stress components 

°p » Tp<J>' a<j> in the curvilinear coordinate system corresponding to 

the contour lines p = constant and <j> = constant where z = «(pe1*). 

ap + a^ = 2UU) +JU)] 

2   _ (A-6) 
ty - Cfc + 2ix . = 2s    [(ü(c) ♦'(?) + co'(c)*(c)] 

P u U) 

The stress functions $ and $  can be separated into components 

<J>*, if;* representing the stress state in the absence of the hole and 

<j>0, ip0 due to the presence of the hole. For uniaxial tension in the 

y direction <f>* and y* take the form 

+ = 4 = 4 "(c) 
-  - (A-7) 

*   ~2  = 2 u(c' 

The potentials <j>0 and I(J0 can be expanded as follows (where only odd 

powers need be retained due to symmetry in both region and loading): 
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n=l 

2n-l 
*o =    *    V 

n=l 

2n-l 
(A-8) 

As first shown by Muskhelishvili [23] the boundary conditions can be 

written in terms of the two functional equations: 

♦oWFi-J  =$} 7°,(5>f?F + F° = STj 
'  fi + »i 

f       —, 

*o^+2~T     M  *o'l dS_ = J_ 
z,     2iri 

f f, - if2 
 A " "     ' 

o-t, 

a-5 

da 

da 

(A-9) 

where r represents the unit circle.    For uniaxial tension in the y 

direction it can be shown that (see [22]): 

f 9 = 0 

f]  = _| [u(o) + ^)] 
(A-10) 

Substituting (A-3) in (A-10) and noting that the mapping coefficients 

are real yields: 

rl 
-aR 
2 

N N 1   ,    "        .2n-l x 1        "    „ ^2n-l 
7 +    \  cna + 5 +    E,  V n=l n=l 

-1 
But a = a      ; hence (A-ll) becomes 

(A-ll) 

aR 
2 

N 
■ + z J.    v    r /A2n-1      ^1 -2ri\ ^+cr+ZCn(a +a        ) 

n=l 
(A-12) 

Hence the right hand side of equation (A-9) becomes 
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27ri 

oR .   N   n   2n-ll 
2 E + nJ,  C"E (A-13) 

where the following result from the theory of residues has been used: 

1 
2-rri 

A A 

pndä     £n    n > 0 
, 5-5       0   n < 0 (A-14) 

Utilizing equation (A-3) and noting that o>'(a) j« 0 and hence 

>'(a) / 0 for single valued mapping functions we obtain the identity: 

r»  
&  E

1 
C"CT 

u[o)    _   n=l  N-l 

"'(a)  -1    N       2-2n  n-l n 

ry+ Z (2n-l)Cna 
2n  n_1 

<^  n=l     n 

2n-l 

+ negative powers of a (A-15) 

where the H's are obtained by long division and negative powers 

of a  are unnecessary because they do not contribute to the Cauchy 

integrals. Also from equation (A-8) we have 

♦0'(a) = z (2n-l) Än5
2"2n 

n=l 
(A-16) 

Multiplying equations (A-15) and (A-16) yields 

(0(a) 
-i 

N-l 2n-l 
w r£r +0'{cr) - z Kna   + negative powers of a (A-17) 

vu;      n=l 

where Kj and Ai are related by the matrix equation: 
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Ki = Bi • Aj  (implied summation) (A-18) 

and the coefficient matrix is given by 

Bij - (2J-D Hi+j.T (no summation). (A-19) 

Making use again of relation (A-14) the second term in the first of 

equati Dn (A-9) becomes 

1 
2irl* 

N-1        9n 7 An       N_1        2n-l      N-1       -   2n-l /B „„, 
E    K/^ fe -    I    ^      -    I    BnjA.C (A-20) 

r n=l n=l n=l 

Substituting equations (A-8), (A-13), aftd (A-20) in the first of 

(A-9) yields the result that B0 = 0 and provides the following system 

of equations to solve for the An: 

Ai+ BM SJ - - rC1 + ci] 

An + BnjSj = -^Cn       n = 2,3, ... N-l (A-21) 

Since the mapping coefficients Cn are real for the cases to be investi- 

gated here the coefficients An will obviously be real also. Hence 

equation (A-21) can be written in the concise form 

Kj + V *j • - f [6m + c"]  n = 1,N-1 

n  -  0R r AN " " Ö- CN 

where 6^ is the Kronecker delta. 

(A-22) 
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Once 4>0 is known ij>0 can be determined from the second of 

equations (A-9) which can be reduced to the following form (see 

Sokolnikoff [28] > equation 84.11): 

N-l _   l-2n 

*oU) = 2rT 
fl  - if2 

, o  - C 
dü " "TO)   *o (?)+ n=l 

(A-23) 

where for real coefficients Kn = Kn and 

0) "*(?) = R 
'l   N _ 2n-l 
- + i    Cn? 
*=  n=l 

>(«) 

Substituting equations  (A-3),  (A-8), and (A-13) in (A-23) we obtain 

finally: 

*n(0 = - 
aR 

N 

n=l 

2n-l N-l        l-2n 

n=l 

N i-2n 

n=l 

1 N 
s    (2n-l) Cn? 2n-2 

N /o    n  A    2n-2 E (2n-l) An? 
n=l 

(A-24) 

n=l 

This completes the formal solution. The previous calculations 

were programmed for a digital computer which computed $, y  given the 

coefficients in the mapping function and proceeded to evaluate the 

stresses according to equations (A-4) and (A-6). 
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APPENDIX B 

EVALUATION OF STRESS SYSTEM 1 

Substituting the definition for <j>(p) in equations (9), inter- 

changing the order of integration, and noting that eipZ = 

e"py [cos (px) + i sin (PX)] yields the following (where z  = x + i y 

is a nondimensional variable, not a complex conjugate): 

gx + py 
ra 

Re G(u) p J0(Pu)elpz dp du 

^pL=-Re 
fa 

G(u) 
o 

p2iMpu)e1pZ dp du (B-l) 

Txy " " Im 

a c 
G(u) 

o 
p2JA(pu)e p    dp du 

The inner integrals can be evaluated by noting the following identities 

MO 

i /    \ ipz J • d pJ (pu)e       dp = - i — 
u dz 

r 1 
J0(Pu)elpZ dp = - 1 S= (u2 - z2)~2 

o 

2   e» 
2, ,    x  -ipz   , d 

p'J (pu)e dp = - -=K 
u dzc 

(B-2) 

J0(pu)e1pZ" dP - - ^ (u2 - z*)4 
dz£ 
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where the second integral has been evaluated using the following 

result from a table of Laplace transforms. 

e"st J0(at) dt = 7 
] 

s2+a2 
(B-3) 

Substituting (B-2) in (B-l) yields the following: 

gx + gv 
ra 

Re i 7= 
dz 

G(u) du 

0\f    -    Oy _ (j2 
/■a 

G(u) du 
(B-4) 

_ _T    d2 
Txy = y Im -=2 

ra 

dl< 
G(u) du 
/u^i2 

Equations (B-4) can be reduced to the well  known Westergaard formula- 

tion [27] for which the stresses are given by: 

ax = Re Z - y Im V 

öy = Re Z + y Im V 

xy y Re V 

(B-5) 

by defining Z in the following manner: 

/■a" 

dz 
G(u) du 

o ^-ü* 
(B-6) 
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Substituting equation (11) with N = 3 for G(t) in (B*6).and carrying 

out the necessary integrations yields the following expression for Z. 

ohZ 
z = ^=1= + y^ - A, - 2A3 i* - f A5 i

4 (B-7) 
zu- a' 

where aj = ^  + A3 (2z"2 + i2)^ + A5 (3Ü
4 + 4a2^ + 8z4)/!5 

a2 = (20A3 F + 8A5 ?
2i" + 32A5 z"3)/15 

For the limiting case of a through crack in an infinite body, A-j = 1, 

A2 = A3 = 0 and (B-7) reduces to 

Z = 1
J— - 1 (B-8) 

which agrees with the Westergaard solution [27]. 
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